Achievable accuracy of parameter estimation for multidimensional NMR experiments.

نویسندگان

  • Raimund J Ober
  • Zhiping Lin
  • Hong Ye
  • E Sally Ward
چکیده

A fundamental issue in NMR spectroscopy is the estimation of parameters such as the Larmor frequencies of nuclei, J coupling constants, and relaxation rates. The Cramer-Rao lower bound provides a method to assess the best achievable accuracy of parameter estimates resulting from an unbiased estimation procedure. We show how the Cramer-Rao lower bound can be calculated for data obtained from multidimensional NMR experiments. The Cramer-Rao lower bound is compared to the variance of parameter estimates for simulated data using a least-squares estimation procedure. It is also shown how our results on the Cramer-Rao lower bound can be used to analyze whether an experimental design can be improved to provide experimental data which can result in parameter estimates with higher accuracy. The concept of nonuniform averaging in the indirect dimension is introduced and studied in connection with nonuniform sampling of the data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of harmonic interference parameters of surface-NMR signal using an adaptive method and residual signal power

Surface nuclear magnetic resonance (surface-NMR) method is a well-known tool for determining the water-bearing layers and subsurface resistivity structure. Harmonic interference is an inevitable interference in surface-NMR measurements. Accurate estimation of harmonic interference parameters (i.e., fundamental frequency, phase and amplitude) leads to better retrieval of power-line harmonics and...

متن کامل

Calculation of the Fisher information matrix for multidimensional data sets

Data sets that are acquired in many practical systems can be described as the output of a multidimensional linear separable-denominator system with Gaussian measurement noise. An important example is nuclear magnetic resonance (NMR) spectroscopy. In NMR spectroscopy, high-accuracy parameter estimation is of central importance. A classical result on the Cramér–Rao lower bound states that the inv...

متن کامل

Fitting the Three-parameter Weibull Distribution by using Greedy Randomized Adaptive Search Procedure

The Weibull distribution is widely employed in several areas of engineering because it is an extremely flexible distribution with different shapes. Moreover, it can include characteristics of several other distributions. However, successful usage of Weibull distribution depends on estimation accuracy for three parameters of scale, shape and location. This issue shifts the attentions to the requ...

متن کامل

Parameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm

An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...

متن کامل

Decimative subspace-based parameter estimation techniques applied to magnetic resonance spectroscopy signals

In this paper, the problem of estimating the frequencies, dampings, amplitudes and phases of closely spaced complex damped exponentials in the presence of noise is considered. In several papers, decimation is proposed as a way to increase the performance of subspacebased parameter estimation methods, in the case of oversampling [1][2][3]. In this paper, a novel extension of the HTLS-method [4] ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 157 1  شماره 

صفحات  -

تاریخ انتشار 2002